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Abstract. Scattering of positive and negative energy D i m  panicles moving under the 
action of vector and scalar paint interaction potentials faced to an impenetrable wall has 
been discussed. The occunen~e of a well defined resonance pattern is only found Tor scalar 
couplings. 

1. Introduction 

I n  a recent paper (Dominguez-Adame and Macii 1989a), bound states of the one- 
dimensional Dirac equation for vector plus scalar point interaction potentials have 
been obtained. The term point interaction potential refers to any arbitrary sharply 
peaked potential approaching the delta-function limit (zero width and constant area). 
Such potentials are often used in some physical problems-solid state physics 
(Dominguez-Adame 1989) or nuclear physics (Dominguez-Adame and Macia 1989b)- 
to approximate more complex short-ranged potentials. Vector potential means that the 
potential is multiplied by the same Dirac matrix as the particle energy, while a scalar 
potential may be regarded as a position-dependent mass. Therefore, vector potentials 
couple the charge whereas scalar potentials couple the mass. Hence a short-ranged 
scalar potential could be originated from the exchange of massive scalar mesons 
between particles, in the same way as a vector field arises from the exchange of vector 
bosons. 

The aim of this paper is to study the scattering of Dirac particles by point interaction 
potentials in one-dimension. We discuss virtual states and resonances for both vector 
and scalar potentials. Using an S-matrix formalism, bound states are also obtained, 
in agreement with previous works (Dominguez-Adame and Macii 1989a). We restrict 
the motion of particles to positive values of the coordinate, so the potential we consider 
is formed by a point interaction potential in front of an impenetrable wall. Hence the 
solutions we find may be used as a guide to get some insight into three-dimensional 
relativistic scattering problems with contact operators (Dominguez-Adame 1990). 

2. Relativistic scattering in one dimension 

The potential we consider varies in the x direction (say) so the up and down spin 
states will be degenerate. Hence the wavefunction of the Dirac particle is expressed 
by just two independent components (Glasser 1983). The Dirac equation in one 
dimension can be written as ( h  = c = 1) 

[ a p + p m  + U ( x ) - E l $ ( x )  = O  ( 1 )  
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where a and p are 2 x 2 Hermitian traceless matrices with square unit and ap + p a  = 0 
(McKellar and Stephenson 1987). In the standard representation a = ux and p = uz, 
g ' s  being the Pauli matrices. 
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The mixed potential is chosen of the form 

where u(x) is any arbitrary function approaching the &function limit, g, and g, are 
the vector and scalar coupling constants, respectively, and a > 0 is a real parameter. 

The point interaction potential may be considered just like boundary conditions 
on the wavefunction at the point x = a. Whereas one could integrate the Schrodinger 
equation around that point to obtain the required boundary condition, this procedure 
does not hold for the Dirac equation at all. The reason comes from the fact that the 
Dirac wavefunction becomes discontinuous for such a potential (in the non-relativistic 
case, however, only the first derivative of the wavefunction becomes discontinuous 
(Fliigge 1974)), and the integral of S(x)$(x) is not well defined in strict distribution- 
theory sense (McKellar and Stephenson 1987). To surmount this difficulty the Dirac 
equation (1) is written as d$/dx = G(x)$(x), where &x) = -iux(uzm + U(x) -E )  is 
a 2 x 2 matrix. In so doing, the Dirac equation admits a Neumann series solution (by 
analogy with the time-dependent Schrodinger equation) which only requires the integra- 
tion of U(x) (approaching the &function) between the limits 0-0 and a+O (this 
procedure is fully explained by McKellar and Stephenson (1987) and Dominguez- 
Adame and Mac% (1989a) so we shall omit here any detail). The obtained boundary 
conditions become independent of the exact form of u(x) and are written in the 
standard representation as follows 

$( a + O )  = cos(g:-g:)'/* ( -la+ . - i e + l - o )  1 (3 )  

where a, = (gv*g,) tan(g:-g:)1'2/(g:-g:)'/2 are always real numbers. Note that the 
boundary condition (3) becomes periodic for pure vector potentials (g,  = 0) since 
a, =tan g,, while this periodicity is absent for pure scalar potentials (gv = 0), because 
a, = i t a n h  g, in that case. 

In order to obtain a complete solution of the problem, boundary conditions at the 
impenetrable wall should also be specified. We shall find again some differences with 
the non-relativistic case. For relativistic particles the current $'U& = 2 Re($:$,) must 
vanish at x = 0, since there is no particle for x < 0 ($. and $, denote here the upper 
and the lower components of the wavefunction). This can be achieved if $, or $, 
vanish at x = 0, although both components cannot simultaneously equal zero, as seen 
from (1). To get the correct non-relativistic limiting behaviour, i.e. the larger component 
going down to zero at the wall, we set $"(a) = 0 for particle solutions and $1(0) = 0 for 
antiparticle ones. Hence the wavefunction becomes 
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O < x < a  

A-(& cos( px + 6 _ )  ) x > a  

sin( px+ a_) 

for E = -( p2+ m2)"2 < 0. A, are the amplitudes and 8, are the phaseshifts, defined 
in a way exactly analogous to the non-relativistic case. Hereafter the upper and the 
lower signs refer to positive and negative energies, respectively. 

After using the boundary condition at x = a, we have for the amplitudes 

+(-a+ E + m  -~ P a.) sin Zpa] 
P E i m  

and for the phaseshifts 

tan(pa + 8,) =tan pa - ( E  ~ *) a, [ 1 + ( y) a, tan pa] -I. ( 6 )  

For weak coupling at low energies, both expressions ( 5 )  and (6) reduce to the obtained 
results by solving directly the Schrodinger equation for a 8-function potential in front 
of an impenetrable wall (Fliigge 1974). For strong coupling, however, a relativistic 
wave equation is indeed required, even at low energies. 

Bound states of the potential can be computed directly from the S matrix, as occurs 
in the non-relativistic treatment. For potentials vanishing beyond some finite distance, 
the poles of the S matrix in the upper half p plane lie along the imaginary axis, and 
these poles correspond to bound states of the system (Berestetskii et a/ 1971). The S 
matrix is related to the phaseshift by S = S, = exp(2i8,) = (1 + i  tan 8*)/(1 - i  tan a+). 
From (6) we obtain S , ( p )  = &-p) /&(p) ,  where the Jost functions 

" E+m ) eipa sin pa e+ + i ( y )  eiga cos pa a- (7) 

satisfy the usual condition &-p*)  = 4T(p).  We replace p by iq, where q =  
+ ( m Z - E 2 ) ' l 2  is real for bound states. Therefore, the condition for bound states is 
simply written as @+(iq) =0, so the energy levels can be computed from the following 
transcendental equation 

(8) -2q = (E  f m ) ( l  -e-2q"")a,+(E 7 m ) ( l  +e-2q")a,. 

Neglecting the effects of the wall on the energy levels (i.e. taking the limit a + m  so 
the particle moves in the whole space), the hound states of a single point interaction 
potential are obtained, in agreement with previous results (Dominguez-Adame and 
Macih 1989a). It is not necessary to solve the trascendental equation (8) to obtain the 
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exact number of hound states supported by the potential, since the Levinson theorem 
is still valid in the relativistic framework (Ma and Ni 1985, Arshansky and Horwitz 
1989 and Klaus 1990). The relativistic generalization of the Levinson theorem, which 
become more simplified in one-space dimension due to the absence of spin effects or 
centrifugal barrier, provides a link between the discrete and the continuum parts of 
the energy spectrum. The theorem requires the calculation of the phaseshift as E 
approaches + m .  For point interaction potentials, a bound state of positive (negative) 
energy appears if 6+(0) = a ( S - ( O )  = a), while the vanishing of 6+(0) (6_(0)) indicates 
the non-existence of bound states of positive (negative) energy. One half-bound state 
(positive or negative) appears whenever the phaseshift at zero momentum (S+(O) or  
S&(O) respectively) reaches the value ~ / 2 .  Such states are not in fact bound states 
because the wavefunction is not square-integrable, but they are characterized by the 
occurrence of an infinite scattering amplitude at zero momentum. 
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3. Results and discussion 

In order to avoid the profusion of free parameters we set a = m-' in our numerical 
results, i.e. a equals the Compton particle wavelength. Therefore, the remainder 
parameters are the potential strengths g, and g,. Due to the different behaviour of 
vector and scalar potentials, we shall discuss both cases separately. 

3.1. Scalar potential 

General features of the scattering states for particles with positive and negative energies, 
moving under the action of a scalar point interaction potential in front of an impen- 
etrable wall, are shown in figures 1-4. 

The amplitude IA,I2 given by (5) is plotted in figure 1. The occurrence of resonance 
peaks for certain potential strengths is clearly seen in this figure. The resonance pattern 
depends on the sign of the particle energy. The position of the resonance peaks do  
not show strong dependence with the potential strength g,, in agreement with the fact 
that such positions are related to the energy levels of a particle between two impenetrable 
walls separated by a distance a. The former assertion could be explained if we consider 
the asympto!ic expression of IA*(p)I2 for large p values, which is found to be 

Hence, imposing the extreme condition dlA,I2/dp =0, positions of the peaks are given 
by p" = ( 2 n  + 1)7r/4a, where n is a positive integer, and its allowed values are summar- 
ized in the following table 

IA*(p)12- (1+2 sinh2g,*sin 2pa sinh 2gJ' p + m .  (9) 

~~ 

Positive Negative 

Positive n = l . 3  ,... n = 2 . 4 ,  

Negative n = 2 , 4  . . . .  n = 1 . 3  . . . .  

No resonances are associated to the case n = 0. Note that, although positions described 
by the condition p .  = ( 2 n  + 1 ) r / 4 a  has been obtained in the limit of large momenta, 
figure 1 shows that there exists a good agreement even for low momenta. The extreme 



Scattering states of interaction potenrials 

~ 

63 

1 3 5 7 9 
4PO/X 

Figure 1. The square modulus o f  the amplitude for a panicle of positive energy subjected 
to a m l a r  point interaction potential in front of an impenetrable wall for g,=+O.549.. . 
(fullcurve), -0.549.. . (chaincurve), 1.5(dattedcurve)and-l,5(broLencurve).Scattering 
amplitude corresponding lo a particle of negalive energy is obtained replacing g, by -g, 
in the figure. 

condition dlA,I2/dp = 0 applied directly in ( 5 )  leads to the following transcendental 
equation 

pa sin pa -2p2a’(1 + p 2 a 2 )  cos 2pa 
tanh g, = 2 * ,,*-f(P) (1+p’a2)(2pa s in2pa+cos2pa) -2( l+p  a ) 

from whose solutions the position of resonance peaks can be computed. A graphical 
method for solving (10) is depicted in figure 2 (we consider only positive energies; 
anaiogous comments couid be stated ior negative energies). A s  seen in this figure, the 
exact solutions of (10) approach those given by p .  = ( 2 n  + l ) v / 4 a  from the right (left) 
for repulsive (attractive) potentials as the limit Jg,J+O is taken. 

The zero-momentum scattering amplitude is given by 

lA,(O)I’=(cosh g,*2sinh gs)-2 
which rapidly increases as the potentia! streneth g; approaches the values ig*- 
*log& Such a phenomenon is related to the binding properties of the potential, and 
will be discussed later. 

Now let’us comment the scattering phaseshift given by (6). From figure 3 is clear 
that resonances becomes sharper as the strength of the potential increases but, unlike 
the non-relativistic case (Van Sinclen 1988), the sign of the phaseshift does not appear 
to be correlated to the attractive or repulsive character of the potential. In the vanishing 
particle momentum limit we have 

0 g, -gT 

7r g, < -81. 
( 1 1 )  * g, = -g, 

P - 0  
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4pam 
Figure 2. Graphical method to obtain the position of the amplitude resonant peaks corre- 
sponding to positive energy particles under scalar coupling. Open cirelesdenate the position 
of resonance peaks for positive (upper hal fdane)  and negative (lower half-plane) values 
o f  the scalar strength g, 

s*+ PO 

3x 

1 3 
4POlx 

Figure 3. Scattering phaseshift plotted as a function of pa for particles of  both positive 
and negative energies subjected to a scalar coupling for g,= -0.549.. . (dotted curve). 
+0.549.. . (broken curve), -1 .5 (full curve) and 1.5 (chain curve). 



Scattering states of interaction potentials 65 

The limit given in ( 1 1 )  partially agrees with the non-relativistic result obtained by Van 
Sinclen. The main difference is the exact value of g $ ;  in our results we have obtained 
g$ = 0.549. . . while Van Siclen has deduced a value of 0.5 for non-relativistic particles. 
According to the Levinson theorem (Ma and Ni 1985), two half-bound states (positive 
and negative) occur as g, equals the critical value -g:. Starting from a potential 
strength larger than -g$, we note that only scattering states may occur; by decreasing 
g, until the critical value -g$ is reached; two half-bound states appear. By further 
decreasing of g, just below -g: one bound state of either energy sign occurs, and the 
phaseshift at p = Ojumps to T. Thus the phaseshift evolution is not continuous. Instead 
it shows a clear cut-off between binding and non-binding potentials. As we pointed 
out above, just for the critical coupling g,= -gr  the value S,(O)=.rr/2 is reached. 
However, this jumping behaviour is a typical feature describing the particle phaseshift 
evolution passing through a resonant state. Thus, from the above considerations, we 
are led to the conclusion that a zero-momentum particle interacting with a potential 
of strength g,= -g$ undergoes a resonance rather than a bound or  virtual state. Note 
that the amplitude becomes infinite at p = 0 as g, = -ga only for positive energies. On 
the other hand one finds an infinite amplitude at p = 0 as g, = +g: for negative energies 
as well, but in this case 6,(0) = 0, so it should be considered as a virtual rather than 
a resonance state. 

To get further insight, we study the S-matrix poles given in equation (8). The bound 
state energy must satisfy the relationship 

9a tanh g, = 
1 - ( 1 - q ~ a ~ ) ~ / ’ e x p ( - 2 q a )  

where E = * ( m 2 -  9*)”*.  Since the right-hand side of (12) remains always negative, 
only attractive potentials could support bound states at first. Taking the limit q + 0  in 
( 1 2 )  we obtain g,(9 = 0) = -tanh-’(l/2) = -lo&= -g$. Therefore, only attractive 
potentials with g, less than -g$ present binding of particles, no matter the sign of the 
energy (i.e. bound states do  appear in pairs (Coutinho and Nogami 1987) since ( 1 2 )  
does not depend on the sign of the energy). This treatment completely agrees with our 
previous discussion about the phaseshift ( 1 1 ) .  Binding properties of the system as a 
function of the scalar potential strength are depicted in figure 4. 

-s: 0 +s: 
1 9s r 

BINDING I NON-BINDING 
POTENTIALS I POTENTIRLS 

I 
Figure 4. Binding properties of the system as a function of the scalar potential strength. 
Open and full circles denale the occurrence of a virtual state and of a zero-momentum 
resonance, respectively. 

3.2. Vector potential 

Figure 5 shows the scattering amplitude for positive and negative energy states. A 
comparison between this figure and figure 1 clearly demonstrates that resonant peaks 
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1 3 5 7 9 
4paix 

Figure 5. The square modulus of the amplitude for a panicle of positive energy subjected 
to a vector point interaction potential in front of an impenetrable wall for g, = 0.464,.  . 
(dotted curve), -0.464. ..(chain curve), -1.5 (broken curve) and 1.5 (full curve). Scattering 
amplitude for a particle of negative energy is obtained replacing g. by -g, in the figure. 

- - . I  .-_I L_^.>.. P ....-,:--..L^_ P _ _  .--a-. ._.. r -  r... c.. . art. iuwci anu u~uaut .~  1ur V~.CLUI cuupirirgb ~iiaii 101 s x i a r  urm.  in iau, Lor a given 
g,, resonant peaks slowly decrease and approach the limiting value 1 for large 
momenta. As a consequence, high energy particles in a vector point interaction potential 
faced to an impenetrable wall d o  not show resonances at all. 

The extreme condition applied to the amplitude ( 5 )  as g, it 0 and g, = 0 leads to 
the following conditions 

p2a2(l+p2a2)1’2sin pa-2p2a2( l+p2a2)  cos2pa 
tan g, = (13b) 

The set of solutions related to (13a) corresponds to g, = n?i, n being an integer. For 
these values of g, the potential becomes absolutely transparent to all energies, as can 
be deduced from a detailed analysis of the transmission coefficient (Dominguez-Adame 
and Ma& 1989a). Solutions of (13b) are associated with both maxima and minima 
amplitude positions. Such solutions are more difficult to obtain than for the pure scalar 
potential case, but once again peak positions do  not strongly depend on g,, as seen 
in figure 5 .  

The limit of the amplitude at  zero-momentum is readily found to be IA*(O)l’= 
(cos g,*2 sin gv)-2, resembling the scalar potential case. Nevertheless, now we have 
an infinite set of coupling constants for which the amplitude at the origin becomes 
infinite. These special values of the coupling constant are g,=Tg,*, where g*= 
tan-’( 1/2)+ n?i = +0.464.. .+ nn, n being an integer. Due to this periodicity we con- 
sider the case n = 0; the obtained conclusions also hold for n #O. 

( I  +p2a2)(2pa sin pa+cos 2pa)-2(1 +p2a2)’I2 . 



Scattering states of interaction potentials 67 

Condition for the existence of bound states may be written from (8) as 

9a tan g, = + 
exp(-2qa) - ( I  - q’a’)”’ 

where we can restrict ourselves to the range - 5 ~  S g v c  5~ because of the periodicity of 
the boundary condition on g,. There exist real, positive 9 values corresponding to 
bound states if g: < (g,l< TT whereas the potential possesses only scattering states if 
OC1gvl<g*. This result agrees with the limiting behaviour of the phaseshift at low 
particle momenta 

and 

-5T < g, < -g: 

Apart from the jump of the phaseshift at p = o  as p approaches Fp:, one Can 
observe in figure 6 that S , ( p )  increases only smoothly. From the results just presented 
some conclusions can be drawn. First, the presence of resonant states (if any) is of 
minor importance for vector-type point interaction potentials as compared with scalar- 
type ones. Second, the amplitude and the phase plots exhibit great resemblance for 
both signs of the particle energy. Finally, only potentials satisfying Jg,J > g: can support 

4poin 
Figure 6. Scattering phaseshift plotted as a function of pn for positive energy particles 
subjected to a vector coupling for g, =0.464. .  . (chain curve). -0.464.. . (broken CUIYC~, 

-1.5 (full curve) and 1.5 (dotted curvel. Phaseshift corresponding to negative energy 
partieler can be obtained replacing g. by -g, in this figure. 
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E>O 

-n 4: - 0 +9: - n 
T 
I 
I 

.. 4 9. 
NOH-BINDING 
POTENTIALS 

BlNDlHG 
POTENTIALS 

NON-BINDING I BINDING 
POTENTIALS I POTENTIALS 

I 

Figure 7. Binding properties of the system as a function of the vector potential strength 
for both signs of the panicle energy. Open and full circles denote the occurrence of a 
virtual state and of a zero-momentum resonance, respectively. 

bound states (see figure 7) while half-bound states occur if lg,l= gs. The 'forbidden' 
region of potential strength ranging from -g,* to +g* disappears as the distance 
between the point interaction potential and the wall becomes very large. Then, the 
bound state spectra of an isolated vector point interaction potential is obtained 
(Dominguez-Adame and Macia 1989a). 

4. Summary 

The critical values of the potential strength separating binding and non-binding poten- 
tials have been found to be -0.549 . . . for scalar couplings and 70.464. . .+ n n  for 
vector ones in our relativistic treatment. These values are slightly different from that 
obtained in the non-relativistic framework which is calculated to be -0.5. The main 
difference between vector and scalar couplings in relation to the scattering properties 
concerns the phaseshift behaviour at resonances. While 6,( pa)+pa  shows a clear 
step-like evolution as pa increases for the scalar point interaction potentials, a smooth 
behaviour is found for vector ones. Also, in the former potential resonance peaks were 
narrower and higher, thus revealing the occurrence of well-defined resonance states 
only for scalar couplings. 
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